The Benefits and Steps to Establish a Proactive Maintenance Strategy

Tom Schiff

Asset Management Consultant

Schiff Asset Management LLC

Email: thomasaschiff@gmail.com

February 16, 2023

REDLIST

Presentation Goals

- Define Proactive Maintenance and its benefits
- Describe critical success factors
- Share Example Standards to Operationalize
- Summary/Steps to consider next
- Q&A

Define Proactive Maintenance and its Benefits

The Benefits and Steps to Establish a Proactive Maintenance

Asset Management Strategy

IT TAKES THE VILLAGE;
NOT JUST MAINTENANCE

Its not just about the equipment **PEOPLE ARE THE GREATEST ASSET**

What is
Proactive Asset
Management?

Benefits of Proactive Maintenance

- Reduced downtime due to fewer instances of malfunctions and breakdowns.
- Improved equipment reliability, availability, and quality.
- Reduced long-term maintenance costs.
- Fewer productivity and safety issues.
- Reduce waste streams and improve environmental impacts

Describe Critical Success Factors

Main Requirements of a Proactive Approach

Commitment from Management; Leadership, Promotion, Resources A Proactive Culture
Driven by Desired
Behaviors,
Leadership,
Standards, Processes,
Metrics, and Rewards
across all functions

Understanding and applying functional capabilities and equipment conditions; data/root cause driven

Leveraging a CMMS solution and other tools to operationalize the functional standards and processes

Optimizing the Approaches Not All Assets are Equal/One Shoe Does Not Fit All

Risk
Management
and
Equipment
Classification

		Impact								
		Very Low	Low	Medium	High	Very High				
Likelihood	Very High									
	High									
	Medium									
	Low									
	Very Low									

Equipment	Description		Criticality				
Number	Description	Safety	Environment	Quality	Economical	Total =	Ranking
PE-002	Pump xyz	4	4	4	1	64	Α
PE-005	Pump ABC	4	4	4	2	128	В
VE-100	Blower YYZ	4	4	4	3	192	С
AG-201	Agitator DBC	0	1	4	4	0	Α
CL-403	Air Conditionning	4	4	4	4	256	D

Evaluation Score	Criticality Ranking	
0 ≤ Criticality ≤ 96	Extreme	= A
97 ≤ Criticality ≤ 145	High	= B
146 ≤ Criticality ≤ 193	M oderate	= C
194 ≤ Criticality ≤ 256	Low	= D

Proactive Approach
Touches and Impacts
Curve Optimization

DIPF Curve

Commitment to FMEA and RCA

Look for Degradation Cause and Detection Methods

Share Example Standards to Operationalize

Establish an Asset

Management Framework

North Star to align

Assess for Continuous Improvement

destructive

Asset Condition

engineering

management

Reliability Engineering

sponsorship

lubrication

elimination

Internal and External Periodic Assessments

New/Repair Equipment Design Standards

- Design for Needed Capacity
- L³/D⁴ for Shaft Stiffness
- Bases and Foundations
- Balance/Alignment/Fits/Clearances
- Lubrication
- Critical Spares Management
- Vendor selection

		C	2	Stan	ndard		Cts		
					Acceptant	ce Limite			
	Incl	Low	High	Low	High	Low	High		
	10		3		5	3	9	6	
	18	0	3.5	1	7	4	10	7	
	24		4	2	8	5	11	8	
VS.	30		45	2	0	5	11	9	
	40		43	2	8	6	13	11	1
	50	0.5	45	2.5	9	7	14	12	2
	65	0.5		3.5	11	9	17	15	2
	80		6	4	12	10	20	18	2
	100		7	4.5	14	12	23	21	3
	120		А	6	16	14	26	24	3

New/Repair Equipment Installation Standards

- Bases, Foundations, Pipe Strains
- Balance/Alignment/Fits/Clearances/Flows/Pressures
- Spare Part Verification
- Vibration
- Lubrication
- Supervision and Sign off and follow up
- Repair shop expectations

		0	2	Star	dard	(3		
	incl	Low	High	Low	High	Low	High	L	
	10		3	1	5	3	9	6	
	18	0	3.5	,	7	4	10	7	
	24		4	2	8	5	11	8	
24	30		45	2	0	5	11	9	
30	40		45	2	В	6	13	11	18
10	50	0.5	45	2.5	9	7	14	12	2
50	65	0.5	170	3.5	11	9	17	15	24
5	80		6	4	12	10	20	18	21
0	100		7	4.5	14	12	23	21	33
00	120		8	6	16	14	26	24	3

Condition Monitoring to Attack Forcing Functions

- Performance curve compliance
- Alignment/soft foot
- Balance
- Resonance
- Looseness
- Lube Oil Contamination

Condition Monitoring Standards

- Parameters Measured
- Data Collection/Analysis Methods
- Frequency of collection
- Data Averaging
- Data Analysis/Alarming
- Communications

Lubrication Excellence Standards

- Lube Selection
- Cleanliness (specifications, S&H, system filtration, CC, monitoring)
- Degradation management
- Optimize oils changes/re-lube
- Application (procedures, feed rates, levels, pressures, workflow/routes, etc.)
- Leakage Control
- Audits

Type of Hydraulic System		m Recomn Inliness Le		Minimum Recommended Filtration Level in Microns $(\beta\chi \ge 100)$	
	ISO 4406	NAS 1638*	SAE 749D		
Silt sensitive	13/10	4	1	2	
Servo	14/11	5	2	3 to 5	
High pressure (250 to 400 bar)	15/12	6	3	5 to 10	
Normal pressure (150 to 250 bar)	16/13	7	4	10 to 12	
Medium pressure (50 to 150 bar)	18/15	9	6	12 to 15	
Low pressure (< 50 bar)	19/16	10	-	20	
Large clearance	21/18	12	-	25	

People (Asset) Excellence

- Leadership and empowerment
- Invest in people development
- Engineer the Human Factor
- Double down on supervisor excellence
- Certification and coaching
- Reward & motivate

- ✓ MLTI
- ✓ MLTII
- ✓ MLAI
- ✓ MLAII
- ✓ MLAIII
- ✓ MLE

Summary/Steps to consider next

- Build Case for Action
- Gain Management Support/Establish Champions
- Go After a Few Low Hanging Fruit/Reward Success/Build On Success
- Prepare for Root Cause Push Back
- Leverage the Right Tools (CMMS, RCA, FMEA, Vendors, etc.)
- Make Systemic Changes for Sustainment
- Take measured risks, do not be afraid of mistakes, INNOVATE
- HAVE FUN!